43 research outputs found

    Beyond solid-state lighting: Miniaturization, hybrid integration, and applications og GaN nano- and micro-LEDs

    Get PDF
    Gallium Nitride (GaN) light-emitting-diode (LED) technology has been the revolution in modern lighting. In the last decade, a huge global market of efficient, long-lasting and ubiquitous white light sources has developed around the inception of the Nobel-price-winning blue GaN LEDs. Today GaN optoelectronics is developing beyond lighting, leading to new and innovative devices, e.g. for micro-displays, being the core technology for future augmented reality and visualization, as well as point light sources for optical excitation in communications, imaging, and sensing. This explosion of applications is driven by two main directions: the ability to produce very small GaN LEDs (microLEDs and nanoLEDs) with high efficiency and across large areas, in combination with the possibility to merge optoelectronic-grade GaN microLEDs with silicon microelectronics in a fully hybrid approach. GaN LED technology today is even spreading into the realm of display technology, which has been occupied by organic LED (OLED) and liquid crystal display (LCD) for decades. In this review, the technological transition towards GaN micro- and nanodevices beyond lighting is discussed including an up-to-date overview on the state of the art

    Organization and training at national level of antimicrobial stewardship and infection control activities in Europe: an ESCMID cross-sectional survey

    Get PDF
    Antimicrobial stewardship (AMS) and Infection prevention and control (IPC) are two key complementary strategies that combat development and spread of antimicrobial resistance. The ESGAP (ESCMID Study Group for AMS), EUCIC (European Committee on Infection Control) and TAE (Trainee Association of ESCMID) investigated how AMS and IPC activities and training are organized, if present, at national level in Europe. From February 2018 to May 2018, an internet-based cross-sectional survey was conducted through a 36-item questionnaire, involving up to three selected respondents per country, from 38 European countries in total (including Israel), belonging to the ESGAP/EUCIC/TAE networks. All 38 countries participated with at least one respondent, and a total of 81 respondents. Education and involvement in AMS programmes were mandatory during the postgraduate training of clinical microbiology and infectious diseases specialists in up to one-third of countries. IPC was acknowledged as a specialty in 32% of countries. Only 32% of countries had both guidance and national requirements regarding AMS programmes, in contrast to 61% for IPC. Formal national staffing standards for AMS and IPC hospital-based activities were present in 24% and 63% of countries, respectively. The backgrounds of professionals responsible for AMS and IPC programmes varied tremendously between countries. The organization and training of AMS and IPC in Europe are heterogeneous and national requirements for activities are frequently lacking

    VUV spectroscopy of pure and Sm2+ doped SrFCl crystals

    No full text
    The creation and relaxation of electronic excitations in pure crystalline SrFCl and Sm2+ doped SrFCl were investigated using vacuum ultraviolet (VUV) spectroscopic methods. In the emission spectra of pure SrFCl and SrFCl: Sm2+ a strong emission band in the vicinity of 4.7 eV was detected, connected to self-trapped exciton (STE) having a Cl-2(-) core. The threshold for creation of STE was detected at 8.5 eV in the excitation spectrum of pure SrFCl and at 7.6 eV for Sm2+ doped SrFCI. It was demonstrated that the excitation spectrum of Sm2+ emission is determined with direct excitation of a Sm2+ center below 7.6 eV and with excitation of the SrFCl host above 7.6 eV. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    >

    No full text

    Pulsed laser deposition of CdWO4CdWO_4 thin films

    No full text
    Thin CdWO4CdWO_4 films were produced on various substrates by pulsed laser deposition. A method of producing transparent films of high structural and optical quality on MgO substrate was developed. It is based on deposition of an amorphous film from a non-stoichiometric CdWO4CdWO_4–CdO target and a consequent crystallization of the film in oxygen atmosphere at 750 °C. The quality of the films produced was verified by x-ray diffraction, electron probe microanalysis, scanning electron microscopy, Raman and optical spectroscopy
    corecore